Rapid Assembly of Multiple-Exon cDNA Directly from Genomic DNA
نویسندگان
چکیده
BACKGROUND Polymerase chain reaction (PCR) is extensively applied in gene cloning. But due to the existence of introns, low copy number of particular genes and high complexity of the eukaryotic genome, it is usually impossible to amplify and clone a gene as a full-length sequence directly from the genome by ordinary PCR based techniques. Cloning of cDNA instead of genomic DNA involves multiple steps: harvest of tissues that express the gene of interest, RNA isolation, cDNA synthesis (reverse transcription), and PCR amplification. To simplify the cloning procedures and avoid the problems caused by ubiquitously distributed durable RNases, we have developed a novel strategy allowing the cloning of any cDNA or open reading frame (ORF) with wild type sequence in any spliced form from a single genomic DNA preparation. METHODOLOGY Our "Genomic DNA Splicing" technique contains the following steps: first, all exons of the gene are amplified from a genomic DNA preparation, using software-optimized, highly efficient primers residing in flanking introns. Next, the tissue-specific exon sequences are assembled into one full-length sequence by overlapping PCR with deliberately designed primers located at the splicing sites. Finally, software-optimized outmost primers are exploited for efficient amplification of the assembled full-length products. CONCLUSIONS The "Genomic DNA Splicing" protocol avoids RNA preparation and reverse transcription steps, and the entire assembly process can be finished within hours. Since genomic DNA is more stable than RNA, it may be a more practical cloning strategy for many genes, especially the ones that are very large and difficult to generate a full length cDNA using oligo-dT primed reverse transcription. With this technique, we successfully cloned the full-length wild type coding sequence of human polymeric immunoglobulin receptor, which is 2295 bp in length and composed of 10 exons.
منابع مشابه
Rapid DNA Extraction Protocol from Stool, Suitable for Molecular Genetic Diagnosis of Colon Cancer
Colorectal cancer (CRC) is one of the most common forms of cancers in the world and is curable if diagnosed at the early stage. Analysis of DNA extracted from stool specimens is a recent advantage to cancer diagnostics. Many protocols have been recommended for DNA extraction from stool, and almost allof them are difficult and time consuming, dealing with high amount of toxic materials like phen...
متن کاملA Simple and Rapid Leaf Genomic DNA Extraction Method for Polymerase Chain Reaction Analysis
In plants, secondary metabolites and polysaccharides interfere with genomic isolation procedures and downstream reactions such as restriction enzyme analysis and gene amplification. The removal of such contaminants needs complicated and time-consuming protocols. In this study, a simple, rapid and efficient method for leaf DNA extraction was optimized. This method use small amount of plant mater...
متن کاملIsolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...
متن کاملMutations that alter RNA splicing of the human HPRT gene: a review of the spectrum.
The human HPRT gene contains spans approximately 42,000 base pairs in genomic DNA, has a mRNA of approximately 900 bases and a protein coding sequence of 657 bases (initiation codon AUG to termination codon UAA). This coding sequence is distributed into 9 exons ranging from 18 (exon 5) to 184 (exon 3) base pairs. Intron sizes range from 170 (intron 7) to 13,075 (intron 1) base pairs. In a datab...
متن کاملDetection of Somatic Mutation in Exon 12 of DNA Polymerase β in Ovarian Cancer Tissue Samples
Background: DNA polymerase β (pol β) is a key enzyme of base excision repair pathway. It is a 1-kb gene consisting of 14 exons. Its catalytic part lies between exon 8 and exon 14. Exon 12 has a role in deoxyribonucleotide triphosphate selection for nucleotide transferase activity. Methods: Genomic DNA was isolated from ovarian carcinoma samples. Single strand conformation polymorphism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 2 شماره
صفحات -
تاریخ انتشار 2007